

Name: Bernardo Breder
Email: bernardobreder@gmail.com
Skype: bernardobreder
Linkedin: https://www.linkedin.com/in/bbreder
Graduate: Universidade Federal Fluminense (UFF) - Monograph: https://goo.gl/lG2yyH
Master: Universidade Federal Fluminense (UFF) - Dissertation: https://goo.gl/esrozB

Project Proposal
Introduction 1

Difficulties 2

Proposal 3

Introduction
A cheap implementation of Web Application Server (WAS) for different clients with isolated
environment, can done by sharing differents Application Servers like NodeJS, Tomcat,
PHP on a single physical machine.

Web Application Server (WAS) works on one or more servers, which hosts projects from
different clients simultaneously on the same or some machines. According to each
company's politics, you can use a single server to serve multiple websites.

There are several ways to implement a Shared Web Application Server (SWAS), where all
of them simulate an Application Web Server Private for customers. For example, SWAS
can be implemented by allocating different server ports, referenced by domain DNS, for
each client. Or can be implemented using the same static IP and through the request
header, it can be directed to the appropriate client.

Difficulties
The Shared Web Application Server (SWAS) has some features such as:

● You need to make some adjustments to the Application Server to redirect requests
to client projects by simulating a Private Web Application Server. These adaptations
are not so simple to implement and require a certain management both to maintain
and to create.

● Popular Application servers such as NodeJS, Tomcat and PHP with their
corresponding Programming Languages are typically built for private environments,
not implementing important requirements when they are installed on a shared
infrastructure. These requirements not implemented are adapted by generating an
overhead on the machine for each client using the machine.

● Depending on the application server you want to share, you must allocate an
Application Server Process for each client to ensure isolation between clients. With
this, the number of clients will determine the number of Processes in the Operating
System, limiting the resources of the machine in function of the overhead of each
process.

● Likewise, depending on the shared database installed available to clients, you need
to allocate resources to each client in order to isolate the databases of the clients.
In addition, external Database Process from Application Server can cost many
resources for the machine.

Proposal
The main goal of the project is to build a Programming Language (LP), a simplified
Database, and a Shared Web Application Server (SWAS) that better manage client
projects and machine resources without having to make adaptations to isolate and
reference the projects of different clients.

Ideally, this project aims at a single machine to have a single process in the operating
system for all projects and database of all clients, simulating a Private Web Application
Server Environment. In addition, all files are being managed by SWAS, virtually, with
automatic backups, encrypted and moved from one disk to another according to storage
needs. When the server goes into overload, a set of clients will be moved to another
machine automatically with the goal of balancing each of each server.

Creating a SWAS allows you to implement some functionality for managing machine
resources such as:

● The SWAS of this project will use a single Process in the Operating System to
respond to all client project requests. This requirement also applies to database
sharing for different clients, where this single Process will be used to serve all
REST and Database requests from different clients.

● A Simplified Database will be built to store project data to reduce the cost of large
databases such as MySql, Oracle and Postgre on the machine.

● With this SWAS you can create the Service Modularization feature where clients
can use services from other clients as a code reuse. This modularisation is a very
light way of sharing code and service. This functionality can enable service sales
from one customer to another, generating a ServiceStore market.

● You can create a load balancing system for SWAS to balance request peaks. When
a machine is overloaded with many requests, SWAS can transfer the execution
context of some clients to another machine. This feature allows sites that receive

many requests to be automatically transferred to other servers in order to balance
server load.

Creating a new programming language (LP) allows you to implement some improvements
to the host and client projects such as:

● The client project implemented in the LP will be compiled into a Single Page
Application allowing the reduction of network traffic, where the responsibility of the
host is to respond only to REST requests and not HTML, CSS, JS and Images, as
is usually done . All HTML, CSS, JS and Images will be stored offline by the
browser through the Html5 feature in order to reduce data traffic. This feature will be
available for projects using this LP. This reduction in traffic will decrease server
demand, thus increasing the number of clients per machine.

● Creating a new File System Library for client applications has the following
advantages:

○ The library will automatically back up according to the operations written by
the applications. With this, the host company will no longer manage the
backup of the data anymore.

○ The library will allocate the files to the clients virtually, invisible to the client
the location of the files on the disk. This feature saves disk space and when
the client wants more space, reallocation can occur any time.

○ Encryption of client data on the disk will occur when data is read and written,
protecting the client from unauthorized access.

