SBC - Proceedings of SBGames 2010

Computing Track - Short Papers

Breder Programming Language for iPhone Game Programming

Bernardo Breder
Universidade Federal Fluminense

Abstract

This paper, propose a new framework definition for programming to
iPhone with simplicity and productively. With this way, the devel-
oper can create a application, thinking only the logic of the game,
forgeting the difficulties of framework and native Language for pro-
gramming to iPhone.

This framework has simple and objective features to ensure the
practicality of programming for iPhone. For this, we implemented a
specification based on typical game framework architectures, which
meets these requirements by using a Programming Language.

The Objetive-C Language used for programming to iPhone is a low
level Language[STEPHEN G. KOCHAN]. With this, the developer
need to implement and manager many thinks in the environment
that should not worry. Because of that, it will be good if the devel-
oper can use a high level Language in which will only worry about
the logic of the application.

In this paper, will be used the Breder Programming Language for
implement this framework. It because, the Breder Language is a
high level Language that has many features to ensure the further
structuring of code and productivity [BREDER, B]. Moreover, this
Language was developed to assist projects that require high effi-
ciency in native method call deployed in some external library, that
will be use for comunication with iPhone framework [BREDER,
B].

Keywords:: Breder Programming Language, Breder Virtual Ma-
chine, Garbage Collector, iPhone, XNA, Framework

Author’s Contact:

bernardo @breder.org
esteban @ic.uff.br

1 Introduction

The superiority in graphics applications with iPhone, iPad, a signif-
icant increase in developing programs for this platform overcame in
the latest years. With the Apple’s application called App Store, fa-
cilitated the distribution of commercial software developed for the
iPhone, either for big and small developers.

New applications increasingly challenging the limits of the hard-
ware. In addition, several other ways to develop an application for
the iPhone are being used to meet the needs of a better development.

Currently, many applications have been developed so unproductive.
This is happened because to develop an application, you must use
a native Language of iPhone called Objective-C which not provide
many features for the developer. Moreover, the standard library
of the iPhone has many mechanisms that enable the occurrence of
failures due to their misuse. It because the framework of iPhone is a
low level and the developer need to study so much for programming
to iPhone. With this, if you call a operational in wrong context,
at runtime, the process can be killed. To make a development of
a game in Objective-C Language, it is necessary to worry about
several features of the Language and game frameworks typically
offer.

Moreover, the Objetive-C Language is not a easy for programming.
This because in this Language, the developer need to worry about
many thinks, that he should not worry. For example, if the context
is to paint a frame, the developer must use only operation about
paint. But, the Objetive-C Language and the Framework permit to
use other operation what can’t use in this time. It because the frame-
work use the state machine to work, permiting to use operation in

IX SBGames - Florianopolis - SC, November 8th-10th, 2010

Esteban Walter Gonzalez Clua

Universidade Federal Fluminense, Medialab

wrong time. With a Language in the front, with the organization of
the class, the Language can previne this operation.

A framework is responsible for implementing a specific function-
ality. Furthermore, the framework should have mechanisms that
allow the configuration of its execution. Unlike libraries, the frame-
work dictates the flow control application, called Inversion of Con-
trol [Martin Fowler, 2004]. Inversion of Control is an abstract prin-
ciple describing an aspect of some software architecture designs
in which the flow of control of a system is inverted in comparison
to procedural programming. In traditional programming the flow
is controlled by a central piece of code with callbacks. Using In-
version of Control this central control as a design principle is left
behind.

For example, the framework will ask how to paint the player in
the game or what happend if i touch the screen in a part of the
game. But, the standards frameworks provided by Apple to develop
applications for iPhone, are very sensitive to failures, in which the
framework will try to resolve conflicts in a better way.

The aim of this paper is to establish a environment of development
for create game with simply, secure and productive way, minimiz-
ing the failures and the complexity of this the iPhone environment.
For this, we created several abstractions on top of a framework, both
to meet the difficulties of standard frameworks, how to address the
limitations of the Programming Language Objective-C.

The great advantage of the Breder Language is the fact that it had
a very efficient Virtual Machine for native operations. Thus, the
framework will use this feature to be implemented more efficient
yours methods. In addition, this Virtual Machine is concerned
with embedded environment. This way, different techniques will be
adopted so as not to harm the functioning due to lack of resources.

In the next section will be presented limitations and unproductive
in the development of an application for the iPhone and will also
be discussed solutions to such problems. Session 3 will present
the definition of the Breder Language, specifically created for this
work. In session 4 we will present the specification of a framework
able to address such described limitations and completelly based
on the Breder Language. Session 5 describes how to implement
a framework using our proposed Language. In session 6 we will
present a demo built on our proposed solution. Session 7 presents
considerations necessary to maintain this environment with perfor-
mance. Finally, the last session presents the conclusions and future
issues of our proposal.

2 Limitations in programming for the
iPhone

Programming for Objective-C Language does not provide all the re-
sources necessary for a good development. It because it is very low
level programming, where the developer need to know and manager
many thinks for programming to iPhone SDK. For the developers,
they will try to find a new development environment for program-
ming simplely, investing you time in the logic of the aplication and
not with thinks that the Language need to work. Would be good if
the development environment uses high level popular Programming
Language.

With this in mind, it should be established the usage of a more pop-
ular Programming Language with better features, such as Java, C+
+, Python, among others. But, this Language need be a high level,
because the programmer do not want to worry with litter thinks,
only with the logic of the aplication.

Moreover, Objective-C Language has no abstract capabilities
enough to meet an easy implementation of complex features, typ-
ically required in games. This is because the Language does not

248



SBC - Proceedings of SBGames 2010

provide tools, abstract features and libraries that facilitate the im-
plementation, making it necessary to develop such resources.

For example, the Objective-C Language does not provide a
complete memory management transparently [STEPHEN G.
KOCHAN]. In this way, the developer can use unauthorized mem-
ory in a wrong way, causing lower permanence manipulation of ob-
jects in memory or even the fall of the application execution. When
this occurs, it is unproductive the detection and clearance of the
problem.

To resolve the lack of transparency in the management of memory,
it Is necessary to create mechanisms to release the objects automat-
ically. That would be the mechanism to recognize the objects that
are no longer being used, releasing them from the memory. To im-
plement such a mechanism, it is necessary to implement the concept
of Garbage Collection in a transparent manner.

Another thinks that Objective-C Language is not so good for pro-
gramming to iPhone, is because do not have a safe executing. It
because, the application is compiled for the machine and if a error
happen, the process will be killed. It will be good is the executing
of the application is manager by a Virtual Machine. With this way,
a error will not kill the process, doing the execute more safe.

Moreover, the best way to capture erros is in the compiler timer. If
you have a error in runtime, this is a unproductive development to
right this error. At compiler timer, the error is better and easier to
resolver be, because the errors are not provided in a specific context.

If the error is in runtime, the developer need to execute the applica-
tion for understand what happening. With this, the developer need
to know what context that is happening and why. Thus, a good
structure of language to retrieval errors at compile time, can gener-
ate greater productivity.

Apple offers several complex framework and low level develop-
ment specifically for the iPhone platform. However, its misuse can
result in failures that are difficult to deal. To resolve the complexity
of the standards framework, the developr must create an abstraction
in order to reduce failures that may occur. This will create opera-
tions that do not generate side effects if they are called improperly.

3 Breder Programming Language

In order to solve problems related to the Language Objective-C,
such as the lack of resources, we propose and implement in this
paper a definition of a new high level language. This Language
is focused on structuring and organizing the source code in order
to increase productivity and safety in the implementation of an ap-
plication. Also, this Language have a syntax similar to the Java
Language in order to make its learning more practical and follows
completely the Object Oriented paradigm.

The objective of the proposed language is providing tools for devel-
opers to obtain a clear code, simple and with a high level standard.
Breder Language is strongly typed, allowing various syntactic and
semantic errors detections at compile time, facilitating the develop-
ment. Although the language is very useful for iPhone developers,
it can also be used in many other pourposes.

Breder Language was developed for Windows, MacOS and Linux,
allowing the use of the same source code in other environments.
Therefore, we developed a Breder Virtual Machine that abstracts
all the features of specific hardware and Operating System, thus
maintaining homogeneity in the application execution and capable
to be used in diverse hardware as embedded devices. In addition,
several embedded devices like iPhone and Android were tested in
order to calculate the degree of cost generated by Breder Language.

Breder Language has interesting features that make game develop-
ment more productive and reliable. One of the main characteristics
is the high Object Oriented paradigm and high level of Garbage
Collection, with automatic object management in the memory.

The Breder Language has the feature of a class with type Interface
[BREDER, B]. Thus, this class called Interface will not implement

IX SBGames - Florianopolis - SC, November 8th-10th, 2010

Computing Track - Short Papers

the methods declared. This because your goal is to keep the specifi-
cation of the class that implement it. Thus, new implementation of
that concept, should follow the specification of the interface, mak-
ing it easier to use the class implemented, because the user already
know the signatures of the methods described in the interface.

Moreover, the Breder Language has a better encapsulation of
classes, protecting their fields and methods outside of classes, thus
making the code more secure. Also, this Language has multiple hi-
erarchy [BREDER, B], in which a class can extend multiple classes
and interfaces. Thus, an organization and reuse of code will be
better assigned, thereby facilitating the organization of classes and
interfaces.

An important requirement of Breder Language is to serve projects
that require intensive processing, such as games. For this, we cre-
ated several internal aspects that ensure high performance in com-
munication between Breder Language and other Compiled Lan-
guages.

The Breder Language allows the creation of native methods that
were used to implement operations in a Compiled Language. We
must therefore develop methods to implement such operations that
need to access specific features of the iPhone SDK.

Finally, the great advantage of the Breder Language is the fact that
it had a very efficient Breder Virtual Machine for native operations
[BREDER, B]. Thus, the framework will use this feature to be im-
plemented more efficiently. In addition, the Breder Virtual Machine
is concerned with embedded environment. This way, different tech-
niques will be adopted so as not to harm the functioning due to lack
of resources. For example, the Garbage Collector of Breder Vir-
tual Machine, in embedded devices, will work lightly, not hurting
application performance.

4 Specification of a Framework

As mentioned previously, most problems related to programming
for the iPhone can be solved with a specification of an appropriate
framework that protects most of the possible failures that may oc-
cur. That should set up a high-level structure in order to isolate the
internal complexities from a basic library of the iPhone SDK.

The first basic structure would be the high-level abstract representa-
tion of a window. With this, all models of iPhone will always have
a single window with different sizes depending on the device, ac-
cording to its resolution. For example, the window for the iPhone
4 have a dimension of 960x640 for the iPhone 3G would have a
dimension of 480x320 and to iPad have a dimension of 1024x768.

Another important basic structure for a game are Components. A
Component represent a object in the device, visible or not, upgrad-
able or not and suitable for events. This component represent the
most basic abstraction of a feature in the window. Thus, in a game
application, a window would have at least one component to be dis-
played, even though this is just a static image without any events.
Therefore, as the component is a structure with the possibility to be
graphics, it must have a dimension of size and other typical graph-
ics properties. The component must have a event handler, which
can be modeled as a callback.

This object may change of state in the context of the application.
Thus, all components registered in a window will always have a
status update event at each screen update. After all the components
change states, they will suffer the event painting in the entire hier-
archy of components of the window.

At the same time we define a component as the most basic represen-
tation structure of an object. For this specification the framework
defines a structure that represents a group of component. With this,
we can define a hierarchy of components with parent-child relation-
ship, in which all components may or may not have a father and the
whole structure of group can have several components sons. This
group structure will be called Container, which will be the father
of several children components. The same occurs with the compo-
nent. The container will also have a dimension in which a reference

249



SBC - Proceedings of SBGames 2010

Frame

- width : int
- height : int
- root : Component

Figure 1: A Frame class

Component
- ¥ :int
=¥ :int
- width : int
- height : int

- parent : Container

+ getAbsoluteX() : int

+ getAbsolute¥() : int

+ update() : void

+ paintig : Graphic) : void

+ touchPress(x : int, y : int) : void

+ touchDragix © int, v © int) © void

+ touchRelease(x : int, vy : int) : void

Figure 2: A Component class

for some operations will be defined. In the specific case of the con-
tainer, when any event is released, it will always be propagated to
the children, passing on their information. Therefore, every event
that occurs at the Container will always be handled by some com-
ponent.

In the case of a container, the state update corresponds to updating
the states of all components sons. The same is true when calling its
painting callback, which will be delegated to all components in the
order that was registered, where the first registered will be the first
to be painted.

As the Component and Container has some features in common, a
class hierarchy can be defined to take advantage of features of size,
event, updating and painting. So in the class diagram, a Container
will inherit from a component.

As mentioned previously, a Container can have multiple children.
Therefore, we must define that a Component is always a parent,
unless it is the root of the hierarchy.

As shown, all components will always suffer first the action of the
state update and then will be painted, in case of graphical items, at
each screen update. With this, the framework creates an entity that
abstracts the process of painting and the updater.

Therefore, independent of the framework of iPhone available, a new
framework that abstracts typical difficulties will be created while
maintaining the simplicity in its usage. For a game, basically, we
defined a structure that works with primitive operations with 2D
images, also called sprites.

A class organization that best represents the proposed architecture
will be presented below.

Figure 1 shows a class defined for the window representation.

Class that represents a component in the figure 2, where contains
the fields coordinated relative size, kinship and sensitive to the
touch event. In addition, the component will have functions to re-
trieve absolute coordinate, change of state, painting and event han-
dling of touch, since the act of pressing, drag and release your finger
from the screen

IX SBGames - Florianopolis - SC, November 8th-10th, 2010

Computing Track - Short Papers

Container

- children : Component([]

Figure 3: A Container class

Graphic

+ drawlmageix : int, v int, i : Image) : void
+ operation0() : void

+ translate(x : int, vy : int) : void

+ rotate(angle : float, x : int, y © int) : void

Figure 4: Example of image

The class that represents a container is illustrated in figure 3. This
container may handle the fields of Its children.

The class that represents the painting, which contains primitive
functions to paint , rotate and move an image is Illustrated in the
figure 4.

The class that represents an image from a file defined in the class
constructor is shown in the figure 5.

Since in Breder Language is possible to detect, at compile time, if
a parameter or a return of a method may be a possibly null value
or not[BREDER, B], the implementation of the framework will use
this feature to tie all the parameters of the methods, telling what pa-
rameters of the methods will be null or not, causing them to become
more productive and reliable to use.

The native methods are operations implemented in a Compiled Lan-
guage. In this work these methods are implemented in ANSI C.
This is an important strategy in order to guarantee high performance
and for, decreasing the overhead in the Breder Virtual Machine pro-
cessing. For the sake of performance, most of the methods of the
game framework will be implemented natively.

5 Results

In order to validate our language definition and the framework built
upon the language, we will present some interactive demos that will
be executed at the iPhone environment. Based on these tests, we
will determine the overheads of processing the Breder Language.

The demo created for this paper, builds an environment full of game
objects, composed by sprites, and making different movements. As
the purpose of the work is not the development of a full game, each
game object make simple animations, which could be substituted
by more complex behaviors.

As mentioned previously, the order of the children of a Container
indicates the order in which objects are painted. Moreover, the
touch event also follows the same criteria. So, when a touch event
occurs, the components that are painted on the front will be privi-
leged in the searching process.

In this example, the sprites are in a privileged ordered in relation

Image

+ Image(filename : String) : void

Figure 5: A Image class

250



SBC - Proceedings of SBGames 2010

to the touch events. As stated above, the privilege is in the order
in which the components were added in the Container. The last
Component added will be the first listener first. This shows that
it is possible to build a hierarchy of event handlers for the game
objects.

Similarly what happens to the balls, also suffer Sprites events up-
date state. From this event, you can change how the cells of sprites
were chosen as the execution context of the application.

6 Performance analysis

In this session, we will comment discuss and analyze the perfor-
mance obtained using our language and framework. on the assump-
tions that were necessary for an Interpreted Language can process
so tolerable by applications. As mentioned previously, in order to.

Several optimizations are were designed to meet the processing
overhead that leads to the Breder Virtual Machine, such as the de-
velopment of native methods. . For example, if the framework uses
native methods, will decrease so much that overhead.

Besides the optimization of native methods that has been widely
used both in the framework, as in the standard library available in
Language, Breder Virtual Machine was built with the purpose of
meeting and seeking the execution of native methods. Thus, when
there is a need to perform native operation, the Breder Virtual Ma-
chine will not generate any kind of processing overhead.

The Garbage Collector is designed with goal of releasing the un-
used objects from memory. Beyond this, the Garbage Collector
finds the projects of great real-time processing. In the case of appli-
cations for iPhone, as the Garbage Collector is acting in the release
objects from memory the image can not be frozen. In the demo, did
not find any kind of freezing as a function of performance of the
Garbage Collector.

The example set by the demo, shows the degree of stress graph that
was generated to test if the programming environment does not fit
in projects with many images. In this demo, we printed more than
700 components at the same time, in which each exchange screen,
will always be updated on her condition and repainted. Even with
the polluted environment of images, the result was very satisfactory,
since that was not found any sign of slowdown in the application.

The same is true when some event has touch screen. The framework
will cover all the components looking for the children who suffer
the event. This search has become very fast, as it was performed
several optimizations on the query.

7 Conclusion

In this paper we proposed a new language architecture, a game
framework based on it and a simple application to validate. This
applications where developed for an iPhone platform and showed
the possibility to create games without the usage of Objective C.
Our work also validate the possibility to develop games for iPhone
without the need of knowing its specific architecture, thanks to the
Breder Virtual Machine.

In addition, several optimizations were made with the framework,
in order to improve its funtionality. The frame rate obtained for a
high number of game objects validates the framework for a high
level game development.

The suggested development environment of an application for the
iPhone, using the Breder Language, would be the Eclipse and
XCode. Eclipse became simpler to use the framework since the
Compiler acts all the time. So, when change is made in the source
code, automatically, the Compiler will recompile the source code.
This feature makes the usage of Breder language very simple to
make any modification in the source code, making very productive
development.

IX SBGames - Florianopolis - SC, November 8th-10th, 2010

Computing Track - Short Papers

Acknowledgements

The authros would like to thank for review the content of the pa-
per. Thanks the users that test the application builded with Breder
Language.

References

BREDER, B., 2010. Breder Language Documentation. Avaliable
at: http://'www.breder.org/doc.

BREDER B., 2010. Breder Language APIL Avaliable at:
http://www.breder.org/api.

JOSELLI, MARK ; ZAMITH, MARCELO ; CLUA, ESTEBAN
; MONTENEGRO, ANSELMO ; LEAL-TOLEDO, REGINA
; CONCI, AURA ; PAGLIOSA, PAULO ; VALENTE, LUIS ;
FELJ, BRUNO ; CLUA, E. W. G. . An adaptative game loop ar-
chitecture with automatic distribution of tasks between CPU and
GPU. Computers in Entertainment : CIE, v. 7, p. 1, 2009.

CLUA, E. W. G. . Arquitetura e Processos de Desenvolvimento de
jogos 3D de Terceira Gerao. In: XXI Simpsio Brasileiro de En-
genharia de Software, 2007, joo Pessoa. Mini-cursos do XXI
Simpsio Brasileiro de Engenharia de Software. Porto Alegre :
Sociedade Brasileira da Computao, 2007.

JOSELLI M. ; CLUA, E. W. G. ; MONTENEGRO, A. ; CONCI,
A. ; PAGLIOSA, P. . A new Physics Engine with Automatic
Process Distribution between CPU-GPU. In: Sandbox 2008:
An ACM Siggraph Videogame Symposium, 2008, Los Angeles.
Proceedings of Sandbox 2008: An ACM Siggraph Videogame
Symposium. Los Angeles : Association for Computing Machin-
ery, 2008. v. 2. p. 149-156.

PAUL ZIRKLE AND JOE HOGUE, 2010. iPhone Game Develop-
ment, 2010.

MARCELO COHEN AND ISABEL HARB MANSSOUR, 2006.
OpenGL, uma abordagem prtica e objetiva, 2006.

RICHARD S. WRIGHT, JR., BENJAMIN LIPCHAK AND
NICHOLAS HAEMEL, 2007. OpenGL, SuperBible, Fourth
Edition, Comprehensive Tutorial and Reference, 2007.

ALLEN SHERROD, 2007. Data Structures and Algorithms for
Game Developers, 2007.

JOACHIM BONDO, DYLAN BRUZENAK, STEVE FINKEL-
STEIN, OWEN GOSS, TOM HARRINGTON, PETER
HONEDER, FLORIAN PFLUG, RAY KIDDY, NOEL
LLOPIS, JOE PEZZILLO, JONATHAN SAGGAU, BEN
BRITTEN SMITH, 2009. iPhone Advanced Projects, 2009.

Apple Develper, 2010. Apple Develper Library. Avaliable at:
http://developer.apple.com/iphone/index.action.

DAVE MARK, JEFF LAMARCHE, 2009. Dominando o Desen-
volvimento no iPhone. Explorando o SDK do iPhone, 2009.

STEPHEN G. KOCHAN, 2009. Programming in Objective-C 2.0.
A complete introduction to the Objetive-C language for Mac OS
X and iPhone development. Developer’s Library, 2009.

251





